

INTER CA – MAY 2018

Sub: Financial Management

Topics –Cash Budget, Time Value of Money, Risk Analysis in Capital Budgeting, Leasing Decision, **Dividend Decision.**

Test Code – M26

Branch: MULTIPLE Date: 14.01.2018

(50 Marks)

Note: **All** *questions are compulsory.*

Question 1 (6 marks)

1. Computation of NPV (2 marks)

Particulars	` Lakhs
Annual Sales	600.00
Less: Operating Costs per Annum	(400.00)
Net Cash Surplus per annum	200.00
Annuity Factor for 5 Years at 10%	3.791
Present Value of Cash Inflows [Annuity Factor 3.791 x Annual Cash Inflow `80]	758.8
Less: Initial Investment	(500.00)
Net Present Value	258.8

2. Sensitivity Analysis (6 marks)

Factor	Revised Value at which NPV = 0	Sensitivity= <u> Revised Value (-) Base Value</u> Base Value
Initial Invt.	Since NPV should be 'Nil' the DCF should be equal to initial Invt. Hence, Revised Initial Invt = DCF itself = ` 758.8	$\frac{758.20 (-)500.00}{500.00} = 51.64\%$
Annual Sales	LakhsRequired: To compute Target Annual Sales at which NPV=0Let Required Annual Sales = 'X'[(x - 400) x 3.791] = Initial Investment 500.On solving, X -531.89 Reqd Annual Sales - `531.89 Lakhs.	$\frac{531.89(-)600.00}{600.00} =$ 11.35% Note: Only Absolute Change is considered.
Operating Costs	Required: To compute Variable Costs at which NPV = 0 Let Required Variable Costs = 'C'. [(600 – V) x 3.791] = Initial Investment 500. On solving, V = 468.11 Reqd Variable Costs = `468.11 Lakhs	$\frac{468.11(-)400.00}{400.00} = 17.03\%$

Question 2 (8 Marks)

Note : Discount Rate from Lessee's perspective = After Tax Cost of Debt =15% x (1-0.35) =9.75%

1. Computation of Net Present Cost under Lease option (1 mark)				
Particulars	Rs.			
Annual Lease Rental	3,34,000			
Less: Taxes at 35%	(1,16,900)			
	2,17,100			
PV of Outflow (Leasing Option)= Rs.2,17,100 x Annuity Factor at 9.75% for 5 years = 3.814	8,28,019			

-1-1 ntion (1

2. Computation of Tax Savings on Depreciation (3 marks)

Year	Opg.WDV	Depreciation at 15%	Clg.WDV	Tax Savings @35%	
1	10,00,000	1,50,000	8,50,000	52,500	
2	8,50,000	1,27,500	7,22,500	44,625	

3	7,22,500	1,08,375	6,14,125	37,931
4	6,14,125	92,119	5,22,006	32,242
5	5,22,006	78,301	4,43,705	27,405

Note :Closing WDV =Rs. 4,43,705 = assumed as Salvage Value.

Year	Opg.	Interest at	After Tax	Principal	Тах	Total Cash Flows	DF@	Discounted
	Principal	15%	Interest		Saving		9.75%	Cash Flow
(1)	(2)	(3)	(4)	(5)	(6)	(7)=(4)+(5)-(6)	(8)	(9)=(7)x(8)
1	10,00,000	1,50,000	97,500	2,00,000	(52,500)	2,45,000	0.911	2,23,195
2	8,00,000	1,20,000	78,000	2,00,000	(44,625)	2,33,375	0.830	1,93,701
3	6,00,000	90,000	58,500	2,00,000	(37,931)	2,20,569	0.756	1,66,750
4	4,00,000	60,000	39,000	2,00,000	(32,242)	2,06,758	0.689	1,42,456
5	2,00,000	30,000	19,500	2,00,000	(27,405)	1,92,095	0.628	1,20,636
5	Salvage Va	ue (assumed	to be equal	to Closing W	/DV)	(4,43,705)	0.628	(2,78,647)
	Net Presen	t Value of Ou	tflows					5,68,091

Total Cash Flows = After Tax Interest + Principal Installment – Tax Savings on Depreciation (3 marks)

Conclusion : Borrow and Purchase option than mode of acquiring than Leasing mode of acquiring the asset, since the Net Present Value of Outflow I slower. **(1 mark)**

Question 3 (8 Marks)

1. Rules for Optimal Dividend Policy as per Walter's Formula

Relationship	Optimal Dividend Policy
Return on Investment (R) >Cost of Equity (K _e)	Zero Payout
Return on Investment (R) <cost (ke)<="" equity="" of="" td=""><td>100%Payout</td></cost>	100%Payout

2. Evaluation of company 's Present Dividend Policy(4 marks)

(a)Present Return on Investment = $\frac{\text{Earnings}}{\text{Equity Capital}} = \frac{4,00,000}{(40,000 \text{ Shares} \times 100)} = 10\%$

(b) Present K_e=
$$\frac{1}{PE \text{ Ratio}} = \frac{1}{12.5} = 8\%$$

(c)Since $R > K_e$, Company is a Growth Firm , and optimal Dividend Payout is Zero".

(d) Since the Company has dividend Payout ,i.e. $\frac{3,20,000}{4,00,000} = 80\%$, it is **not** following the Optimal Policy .

3. Market Price of Share (Walter's Model)(4 marks)

Earnings Per Share(E)	Rs.4,00,000 ÷40,000=Rs.10	Cost of Equity (K _e)	8%
Dividend Per Share (D)	EPS Rs.10 x Payout 80% =Rs.8	Return on Investment (r)	10%

Value per share	When Payout =Zero	When Payout =Rs. 8
Value per Share = $\frac{D+(E-D)\frac{r}{K_e}}{K_e}$	$=\frac{\text{Rs.0+(Rs.10-Rs.0)}\times\frac{0.10}{0.08}}{0.08}=156.25$	$=\frac{\text{Rs.8}+(\text{Rs.10}-\text{Rs.8})\times\frac{0.10}{0.08}}{0.08}=131.25$

Question 4 (6 Marks)

(a) To get ₹25,00,000 after 15 years from now, Mr. X needs to deposit <u>an amount at</u> the end of each year, which gets accumulated @9% p.a. for 15 years to become an amount to ₹25,00,000. This can be calculated as follows:

Future Value = Annual Payment × (FVIFA n, i) or Annual Payment × $\left(\frac{(1+i)^n - 1}{i}\right)$

Future Value = ₹25,00,000 Interest (i) = 9% p.a Period (n) = 15 years ₹ 25,00,000 = A (FVIFA 15,0.09) Or, A = $\frac{₹25,00,000}{29.361}$ = ₹85,146.96 p.a.

(b) To get ₹25,00,000 after 15 years from now, Mr. X needs to deposit <u>a lump sum</u> <u>payment</u> to the fund which gets accumulated @9% p.a. for 15 years to become an amount to ₹25,00,000. This can be calculated as follows:

Future Value = Amount × (FVIF_{15, 0.09}) or Amount × (1+ 0.09)¹⁵ Or, Amount = $\frac{₹25.00.000}{3.642} = ₹6,86,436.02$

(c) To get ₹ 25,00,000 after 15 years from now, Mr. X needs to deposit <u>an amount at</u> the beginning of each year which gets accumulated @9% p.a. for 15 years to become an amount to ₹25,00,000. This can be calculated as follows:

Future Value = Annual Payment × (FVIFA , i) × (1+i) ₹ 25.00,000 = A (FVIFA 15.0.09) × 1.09

₹ 25.00.000 = A (29.361 × 1.09) ₹25.00.000

Or, A =
$$\frac{(25,00,000)}{32.003}$$
 = ₹ 78,117.68 p.a

Question 5 (4 marks)

Advise to the Management

Option I: Cash Down Payment (1 1/2 marks)

Cash down payment= Rs 7,50,000

Option II: Annual Installment Basis(1 ½ marks) Annual installment = 9,00,000 × 1/6= Rs 1,50,000 Present Value of 1 to 6 instalments @12% = 1,50,000 × 4.111 = Rs 6,16,650

Advise: Mr. Patel should buy Xerox machine on installment basis because the present value of cash out flows is lower than cash down payment. This means Option II is better than Option I. (I mark)

Question 6 (10 Marks)

	•				
Particulars	Nov	Dec	Jan	Feb	Mar
Sales	` 18, 00,000	` 25,80,000	` 9,00,000	` 12,60,000	` 18,00,000
	50% x 18,00,000	50% x 25,80,000	50%x 9,00,000	50%x12,60,000	50%x18,00,00
Receipt Pattern: 50%	= ` 9,00,000	=`12,90,000	=`4,50,000	=`6,30,000	=`9,00,000
		40% x 18,00,000	40% x25,80,000	40% x9,00,000	40%x12,60,00
40%		=`7,20,000	=`10,32,000	=`3,60,000	0
			9%x18,00,000	9%x25,80,000	=`5,04,000
9%			=`1,62,000	=`2,32,200	9%x9,00,000
					=`81,000
Total Receipts			` 16,44,000	` 12,22,200	` 14,85,000

Computation of Collection from Debtors (1 mark)

	2. Computation of Closing Stock of RM required for Jan, Feb and Mar (1 mark)	
Month	Closing Stock of RM = Next 3 months Sales x 50%	``
January	50% of (Feb+Mar+Apr) Sales = 50% of (`12,60,000 + `18,00,000 + `16,20,000)	23,40,000
February	50% of (Mar+Apr+May) Sales = 50% of (`18,00,000 + `16,20,000 + `14,40,000)	24,30,000
March	50% of (Apr+May+Jun) Sales = 50% of (`16,20,000 + `14,40,000 + `12,00,000)	21,30,000

3. Computation of Purchases and Payment to Creditors (1 mark)

Particulars	Jan	Feb	Mar
Opening Stock of Raw Materials(` 25,20,000 - ` 90,000)	`24,30,000	`24,30,000	`24,30,000
Add: Purchases(balancing figure) (by reverse working)	` 3,60,000	` 7,20,000	` 6,00,000
Sub – Total (derived by reverse working)	` 27,90,000	` 30,60,000	` 30,30,000
Less: Closing Stock of RM (WN 2) Next 3 months Sales x 50%	` 23,40,000	` 24,30,000	` 21,30,000
Raw Material Cost of Goods Sold = 50% of Sales	` 4,50,000	` 6,30,000	` 9,00,000
Payment to Creditors Previous month purchases	` 6,95,000	` 3,60,000	` 7,20,000

4. Cash Budget for the months of January, February and March (amount in `)(5 marks)

Particulars	Jan	Feb	Mar
A. Opening Balance	3,00,000	6,78,140	10,24,940
B. Receipts / Inflows			
Debtors (WN 1)	16,44,000	12,22,200	14,85,000
Sales of Obsolete Stock ^{`90,000} x 75%	-	-	1,35,000
Sale of Machinery (given)	-	1,00,000	_ !
Total Receipts	16,44,000	13,22,200	16,20,000
C. Payments / Outflows			
Creditors (WN 3)	6,95,000	3,60,000	7,20,000
Fixed and Variable Expenses (given)	4,81,860	3,56,400	4,75,200
Equipment Repair Expenses (given)	9,000	9,000	9,000
Ex-gratia (given)	30,000	-	45,000
Dividends (given)	-	-	1,20,000
Income Tax and Pf (given)	50,000	50,000	1,00,000
Capital Expenditure (given)	-	2,00,000	-
Loan Interest & Principle 8,40,000 + (8,40,000 x15% x $\frac{3}{12}$)	-	-	8,71,500
Total Payments	12,65,860	9,75,400	23,40,700
D. Closing Balance / (Overdraft) (A + B – C)	6,78,140	10,24,940	3,04,240

Question 6 (8 Marks) (2 marks each)

1. Computation of Base Case NPV

Particulars	
Present Value of Perpetual Savings = $\frac{Annual Savings}{Rate of Return} = \frac{2.95}{15\%}$	19.67
Less: Investment Cost	8.00
Net Present Value	(0.33)

Observation: The Base Case NPV is negative and therefore, the project cannot be accepted as it is.

2. Computation of Adjusted NPV

Particulars		` Lakhs
Total Investment		8.00
Debt Component	[30% of Investment Cost of `8.00 Lakhs]	6.00
Interest on Debt @ 12%	[` 6 Lakhs x 12%]	0.72
Tax Savings on Interest on Debt	[` 0.72 Lakhs x 30%]	0.216
Present Value of Tax Saving on Per Base Case NPV	petuity = $\frac{Annual Savings}{Interest Rate} = \frac{0.216}{12\%}$	1.80 (0.33)
Adjusted NPV [Base Case N	IPV + PV of Tax Savings due to Interest on Debt]	1.47

3. Minimum Base Case NPV without Tax Shield

At Minimum Base Case NPV, Adjusted NPV = 0

- 0 = Base Case NPV + Tax Shield on Interest
- 0 = Base Case NPV + `1.80 Lakhs
- Minimum Base Case NPV = (` 1.80 Lakhs)

4. Internal Rate of Return at Minimum Base Case NPV

- > 0 = PV of Perpetual Inflow Investment + Tax Shield
- $= \frac{Perpetual Inflow}{2.15} 8.00 + 1.80$
- 0.15 Pernetual In
- $\blacktriangleright \quad 0 = \frac{Perpetual Inflow}{0.15} 18.8$

$$\blacktriangleright 18.2 = \frac{Perpetual Inflow}{0.15}$$

Perpetual Inflow = `18.8 Lakhs x 0.15 = `2.73 Lakhs

<u>`2.73 Lakhs</u> `20.00 Lakhs ➡

13.65%
